Lesson 5 (+) Advanced Training ECG, Eye Tracking, Power Injector

Lesson 5 (+)

Administrative Issues and Procedures
Safety Issues
Scanning Procedures
Data and Image Transfer
Scan Room Peripheral Equipment
Scan Room Issues
Miscellaneous

Advanced Training

Eye tracking

ECG Gating and triggering

Power Injector

ECG Specific Information

 Needs true "hands on" sessions in addition to presentation

Please make appointment for more detailed information

Types of MR Gating Equipment

• Fiber-Optic

High Impedance

High Impedance Fiber-coated

Examples of ECG Gating Problems

- Real arrhythmias (PVC's)
- Sinus arrhythmia
- Noise associated with breathing/breath-holding
- Missed triggers
- False positive triggers
- Gradient interference
- Wrong part of QRS complex trigger(T-wave)

The Medrad 9500 ECG Monitor

• Fiber Optic

- Pulse Oximetry
- NIBP
- End-Tidal CO2
- Anesthesia Capabilities

The Medrad ECG Monitoring System

The Main Monitor

The Fox Module

The ECG Box_Shroud
The Remote Monitor

The Medrad Fox Module

- Attach to the patient electrodes
 - On/Off switch on the side

The Medrad Fox Module

- Regular
- T-Wave Suppressor
- Turbo Fox

Patient Electrodes

- Vermed Electrodes are stocked in the 3T and Cardiac Scanners
- Do NOT use the GE or 3M Electrodes
 - Metal nub

ECG Gating Control Window

- This is the Default setting
 - Click on appropriate settings for gating or pulse oximitry

Cardiac Conducting System

Sinoatrial node

Origin of normal sinus rhythm

Atrioventricular node

A conducting pathway that delays ventricular contraction relative to atrial contraction

His-Purkinje System

Rapidly conducting pathways that allow uniform excitation of the right and left ventricles

Components of the ECG Waveform

The ECG Signal

Delays Associated with ECG Triggers

- Electronic delays
 - Analog and digital filter delays
 - Serial devices
- QRS related delays
 - Trigger location relative to the QRS complex morphology.
 - LBBB, RBBB, IVCD
- Gating algorithm delays
 - slope detection
 - peak detection

The ECG records the electric potential (Ep) from net dipole (m) of the heart

Charged Particles in Blood Flowing through a Magnetic Field Experience a Lorentz Force (F)

The ECG is Contaminated by a Blood Flow Related Surface Potential in the Magnet

The ECG is Contaminated by a Blood Flow Related Surface Potential in the Magnet

Out of Magnet

In the Magnet

Degradation of ECG Diagnostic Information

- ECG Morphologic Diagnoses
 - ST-T wave abnormalities(*)
 - Q-waves (*)
 - QRS duration (*)

- Arrhythmias
 - Ventricular arrhythmias (ok)
 - Supraventricular arrhythmias (ok)
 - Atrioventricular block (*)
- (*) Diagnostic information distorted or lost during MRI

Trouble Shooting: Biphasic QRS

Pointers on Achieving Reliable ECG Gating

- Shaving site preference
- Skin preparation NuPrep[©] or other slightly abrasive cleaner

- Check leads with impedance meter (outside of room)
- Consistent prep and lead placement

Placement of ECG Leads and Skin Prep

- Modified 4-limb lead configuration (see figure)
- For 3-lead systems, we use positions 1, 2, and 4
- Skin Prep is essential:
 - Nu-Prep skin abrasiveD.O. Weaver & Co.
- ECG pads can make a difference:
 - Vermed Radio-Translucent
 V Lead Electrodes
 Vermont Medical, Inc.

Placement of ECG Leads

• ECG lead placement is modified from the standard configuration to minimize artifacts

 QRS axis is important for QRS amplitude

 High QRS amplitude = gating success

Placement of ECG Leads

- ECG lead placement is modified from the standard configuration to minimize artifacts
- QRS axis is important for QRS amplitude
- High QRS amplitude = gating success

Left Axis Deviation

Einthoven's Triangle

Trouble Shooting: ECG amplitude

S. Scheidt. Basic Electrocardiography: Leads, Axes, Arrhythmias. CIBA Clinical Symposia 35(2): 1983

Know Your ECG Gating Algorithms

Threshold detection of QRS Complex

Safety Concerns with ECG and Monitoring Equipment

- Coiled wires, can = patient burns
- ECG patches do NOT heat up significantly

FDA: Maude search for safety issues with monitoring equipment (USA) http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfMAUDE/search.cfm

Gradient Interference on the ECG

Pre-stress

During dipyridamole perfusion imaging at peak stress

Gradient Interference on the ECG

3-D Navigator

Out of Magnet

ECG Filtering and Processing

Standard Leads

Fiber Optic ECG

High Impedance Leads

Trouble Shooting: Adaptive Filtering During MRI Acquisition

Acquisition

Continuous ECG rhythm strip during hybrid GRE cine acquisition with echo-train readout

Acknowledgements

3 Tesla Core Facility

NHLBI

NMRF

Duke List Serve for MR Technologists

GE Medical Systems

Avotec, Inc.

Medrad, Inc.

Berlex Laboratories

ACR Glossary of MR Terminology